
Hammock 2.1 Internals
Test Doubles for Java ME

Carl Meijer

June 2009

1 Hammock Internals

This document gives an overview of the code structure of Hammock. Hopefully
this will make it easier to understand the code if you want to modify it, extend
it or use the classes effectively. The JavaDocs are the definitive guide to the
API; this document provides more of a high-level view to see what classes exist
and how they collaborate.

1.1 Core Classes

The core classes of Hammock fall into five categories as shown in figure 1:

• Test double classes (classes that implement IMockObject).

• Classes that implement the IInvocationHandler interface.

• The MockMethod and MethodInvocation classes.

• Helper classes; e.g. classes that implement the IArgumentMatcher
interface.

• Exception handling classes.

Figure 1: Core Hammock classes

1



1.2 Test Double Classes

Test double classes are classes that implement the IMockObject interface. The
AMockObject abstract class (see figure 1) implements the methods of IMockObject.
If a test double mocks an interface, it can extend AMockObject rather than im-
plementing IMockObject’s methods explicitly. For example, MockHttpConnection
implements the HttpConnection interface and extends AMockObject.

Test doubles can be configured to behave like mocks or spies by injecting
an appropriate method invocation handler via the setInvocationHandler()
method or the test double’s constructor.

1.3 Method Invocation Handlers

A test double must respond to method invocations in some configurable man-
ner. It is possible to implement IMockObjects that respond directly to method
invocations, but that is not the Hammock idiom. Instead test doubles are asso-
ciated with method invocation handler; the handler is configured to respond to
method invocations or to provide some default response for method invocations
that haven’t been explicitly configured. When a method is invoked, the test
double queries its invocation handler how to respond. The advantage of using
invocation handlers is that the code for all test double classes remains the same
irrespective of whether our test doubles behave like spy objects or mock ob-
jects; instead we only need to switch a single instance of our method invocation
handler to change the behavior of our test doubles.

Method invocation handlers implement the IInvocationHandler interface.
As shown in the UML class diagram of figure 2, Hammock provides three (con-
crete) implementations of the IInvocationHandler interface:

• Hamspy,

• Hammock, and

• MethodHandler.

The Hamspy invocation handler allows test doubles to behave like spy objects
similar in spirit to Mockito’s test doubles. The Hammock class provides mock
object behavior similar to that provided by EasyMock and jMock.

Google have released a program, TestabilityExplorer, that determines how
difficult a piece of software is to test using a metric known as “cyclomatic com-
plexity”. According to this measure the MethodHandler class is the most com-
plex of the three invocation handlers with a score of 31 (the scores for Hammock
and Hamspy are 19 and 26 respectively). While the MethodHandler class is com-
paratively complex, it is also very limited; a MethodHandler can only be con-
figured to respond to invocations associated with one method. The Hamspy and
Hammock classes can be configured to respond to invocations of more than one
method using the setExpectation() and setStubExpectation() methods.
The setExpectation() methods, though, return instances of MethodHandler.
So, while it would be unusual to explicitly set a MethodHandler as the invoca-
tion handler for a test double, the MethodHandler class is an essential class.

2



Figure 2: Method Invocation Handlers

1.4 The MockMethod and MethodInvocation Classes

Java SE has a java.lang.reflect.Method class to identify a method of a class.
Java ME does not support reflection and there is no inherent language support
for identifying methods. The MockMethod class encapsulates the attributes of a
method of a test double. An instance of MockMethod has a number of attributes
that may be retrieved via various getters:

• An identifier which is a String representation of the method’s
name and arguments.

• An associated class; the class that the method belongs to.

• Whether the method is abstract or concrete.

• The classes of the arguments passed to the methods.

• The class of the return value (which is null for a method of
type void).

• The classes of the exceptions that the method can throw.

The isAbstract() method allows the Hamspy method invocation handler
to determine how to respond to a method invocation if no expectation has
been set. For example, if an expectation has not been set but a method is
not abstract, then the processing of the method invocation can be delegated
to the superclass rather than responding with some canned response. The
getNumberOfArguments() and validateArguments() methods are used for
verifying that expected arguments are consistent with a method’s signature.
Similarly the validateThrowable() method checks that the method signature
allows the throwing of a particular exception.

The MethodInvocation class (see figure 3) depends on the the MockMethod
class. Since test doubles do not respond directly to method invocations, a test
double needs some way of telling its invocation handler about the method invo-
cation. The details of the method invocation are passed using a MethodInvocation
instance. The important attributes of an invocation are: the method (repre-
sented as an instance of MockMethod), the arguments passed to the method
(which is an array of Objects) and the test double that was invoked (an in-
stance of IMockObject).

If an invocation handler knows how to respond to a method invocation it will
set a return value or an exception for the method invocation. If a return value

3



Figure 3: MockMethod and MethodInvocation Classes

or exception has been set for a MethodInvocation, the isEvaluated() method
will return true. The ATestDouble invocation handlers use the isEvaluated()
method to determine whether any of the MethodHandlers they created (via
setExpectation()) were able to evaluate a method invocation. If not, they
respond appropriately (for example, the Hammock class will throw an exception
indicating that a method was unexpectedly invoked).

1.5 Helper Classes

1.5.1 Argument Matching Classes

When a method is invoked on a test double it is essential to be able to verify
that the arguments passed to the method are as expected. It is also useful to be
able to modify mutable objects (especially arrays) that are passed in a method
invocation. For verifying arguments and modifying mutable objects, instances
of the IArgumentMatcher interface can be used. Hammock comes with five
classes that implement the interface (see figure 4):

• DefaultArgumentMatcher that is used if no other argument
matching is specified.

• PromiscuousArgumentMatcher whose areArgumentsEqual()
always returns true and is used if ignoreArgument() is in-
voked on a MethodHandler or InvocationVerifier.

• ClassArgumentMatcher that returns true if the actual argu-
ment is the same class as (or a subclass of) the expected argu-
ment class.

• NotNullArgumentMatcher checks that the actual argument is
not null; any expected argument specified is ignored.

• PopulateArrayMatcher that can be used to populate an array
when passed to a method invocation.

The DefaultArgumentMatcher class is the most complex of the argument
matching class. In fact, according to the TestabilityExplorer, it is the most
complex Hammock class with a cyclomatic complexity of 41. This complexity
arises from the fact that the class doesn’t simply test for equality using equals
but, in the case of arrays, will check whether an expected and actual array have
the same dimensions and, if so, whether their individual elements are equals.

4



Figure 4: Argument matching classes

Figure 5: InvocationVerifier and InvocationMatcher Classes

1.5.2 The InvocationVerifier and InvocationMatcher Classes

When using spy objects with the Hamspy handler, one will normally, after exer-
cising a class under test, verify that certain methods were invoked with partic-
ular arguments. This can be done by (tediously) retrieving the method invoca-
tions from the Hamspy instance. It’s easier to use an instance of InvocationVerifier
that compares actual and expected arguments. The InvocationVerifier class
is shown in figure 5. This helper class provides methods for specifying how many
times a method should have been invoked and a setter method for supplying
argument matchers.

The InvocationVerifier class uses the InvocationMatcher class to verify
whether an actual and expected method invocation are equal (via the isMatch()
method). The InvocationMatcher class is also used by instances of the MethodHandler
class to determine whether they should process a method invocation.

1.5.3 The Default Values Class

The DefaultValues class is used by the Hamspy class to return a default value
when a method is invoked on a spy object but no expectation has been set. For
example, false is returned for a boolean method, zero for a numeric type and
null if the return type is an Object. The CLDC 1.1 distribution will return
0.0f or 0.0 if the return type is float or double respectively.

5



Figure 6: Hammock Exception Classes

1.6 Exception Classes

The HammockException class is an unchecked exception (see figure 6) that is
thrown by the Hammock framework when things go wrong. Examples of prob-
lems are

• A call to verify() on a Hammock instance failed because a mock
object wasn’t invoked as expected.

• An expectation was set that a method would be invoked with an
invalid number of arguments (the number of arguments passed
in the expectation is inconsistent with the method’s signature).

• A method handler was invoked and needed to return a value
but no return value was specified in the expectation (via the
setReturnValue() method).

• A method handler was instructed to throw a checked exception
which is inconsistent with the signature of the method.

Examining the IHammockExceptionErrors interface is instructive in learn-
ing what can go wrong.

The HammockException class exposes two methods to get a text string de-
scribing the particular exception. The getError() message returns a succinct
error message as defined in IHammockExceptionErrors. The getMessage()
method provides a more detailed message that includes the name of the class
that threw the exception.

6


