
Hammock 2.1 User Guide
Test Doubles for Java ME

Carl Meijer

June 2009

1 Mock Objects

1.1 Introduction

In unit testing a programmer writes tests to validate units of production code.
A unit is, typically, a single method of some class under test (CUT). Normally,
though, a class cannot be tested completely in isolation since it needs to collab-
orate with other classes to do anything useful. Interactions can make testing
tricky if a collaborator:

• Is difficult to configure (for example, a data access object,
DAO).

• Exhibits behavior that must be tested but is difficult to repro-
duce (for example, a network error).

• Is slow.

• Is nondeterministic (e.g. a random number generator or date
class).

• Doesn’t yet have a concrete implementation (e.g. is only spec-
ified by an interface or an abstract class).

In any of the above scenarios a mock object can usefully stand in for the
actual collaborator. The CUT will call methods on the mock object which will
return results or throw exceptions as specified in the unit tests. A mock object
also allows tests to verify that methods were invoked by the CUT.

Mock objects are one example of the test double pattern; other examples of
test doubles are test stubs and spy objects.

1.2 Java ME and Mock Objects

Mock objects have found widespread use in Java EE and SE development. Popu-
lar frameworks are jMock, EasyMock and Mockito. These frameworks typically
rely on, at least, the reflection API and sometimes Java 5 enhancements such
as generics. Consequently, mock objects have not been widely used in Java ME
which is based on Java 1.2 and doesn’t support reflection.

Common characteristics of Java ME applications are that they may:

1

• Use a phone’s connectivity to establish HTTP connections,
send and receive SMSs and to communicate with other devices
over Bluetooth or infrared.

• Store data persistently either using the RecordStore or, possi-
bly, the file system.

• Need to be built for more than one device to work around bugs
or to exploit features not present on all devices.

In the above scenarios, mock objects can simplify testing since:

• We can use mocked connections rather than having to hit a
network in our tests.

• We can abstract away our persistence layer using mocked per-
sistence classes rather than writing code to set up and tear
down record stores.

• We can write tests that mimic the behavior of a particular
device.

1.3 Hammock and HammockMaker

Hammock is a test double library that supports the notions of both mock ob-
jects and spy objects. Traditionally test double frameworks have supported
mock objects but spy objects are gaining favor with the advent of the Mockito
framework. This user guide shows how to use mock objects; there is a separate
document in this distribution that describes how to use spy objects.

Hammock includes test doubles of many classes from the MIDP packages
(including the IO, LCDUI, WMA, PDA API and the location API packages).
The Hammock distribution includes a utility, HammockMaker, that allows de-
velopers to mock their own interfaces and classes. Unlike Java SE mock object
frameworks where the mock objects can be created at run time, Hammock needs
source or class files of the objects to be mocked. The Hammock distribution
includes a utility, HammockMaker, that can create the source code for a test
double given the class file of the class to mock. HammockMaker can be run:

• From the command line.

• As an Ant task.

• As an Eclipse plug-in.

The examples in this guide, run HammockMaker as an Ant task. See the Ham-
mockMaker User Guide for details on running the tool from the command line
or within Eclipse.

Hammock can be used with any unit test framework for Java ME including
J2MEUnit, JMUnit, MoMEUnit and CLDCUnit. The examples in this guide
use JMUnit.

2

1.3.1 Hammock Distributions

There are several Hammock libraries in this distribution (in the dist directory):

• The core Hammock libraries for CLDC 1.0 and CLDC 1.1
(hammock core cldc10-2.1.0.jar and hammock core cldc11-2.1.0.jar).

• Libraries that include mocks of many MIDP classes for both
MIDP 1.0 and MIDP 2.0 (hammock midp10 cldc10-2.1.0.jar,
hammock midp20 cldc10-2.1.0.jar and hammock midp20 cldc11-2.1.0.jar).

If possible, you should use the CLDC 1.1 libraries. The CLDC 1.1 build
can generate more detailed error messages and catch some testing errors ear-
lier on. The MIDP 2.0 JARs contain mocks of many optional microedition
libraries (such as wireless messaging, the PDA API, location API, etc). See the
JavaDocs to view all the mocked classes. The examples in this guide use the
hammock midp20 cldc11-2.1.0.jar library.

Some people believe that one should mock only your own classes and that you
should not mock third-party classes. If you strongly agree with this sentiment,
you should use the core libraries. The core libraries can be used with Java
SE (but most people would choose to use a Java SE framework like jMock,
EasyMock, Mockito, rMock, etc.).

The distribution also includes JARs containing mocks of some of the kSOAP2
classes built for CLDC 1.0 and CLDC 1.1 (in the ksoap mocks directory).

2 The Build System

While it is possible to create MIDlets using only an IDE, most professional de-
velopment probably uses Ant or Maven to build the applications. Additionally,
it is desirable to run unit (and possibly integration) tests before packaging an
application. Only if all tests pass is the MIDlet packaged. This user guide uses
Ant for building MIDlets. Some familiarity with Ant is probably helpful.

In the next section, we show how to create unit tests using Hammock and
JMUnit. The examples can be found in the examples directory of the Hammock
distribution. The tests can be compiled and run using the build.xml Ant script.
You may want to use the build script as a template for your own build scripts.
In particular the script shows how to add the <hammockmaker> and JMUnit
<testlistener> tasks to your build script.

The build script:

• Compiles the source to be tested.

• Compiles and packages the unit tests into a test MIDlet.

• Runs the tests in the WTK emulator and creates a test report.

• Halts the build if any unit tests failed.

• Packages the application.

3

2.1 Ant, Antenna, JMUnit and Hammock

The examples use:

• The tasks provided by Antenna for building, obfuscating and
packaging MIDlets.

• HammockMaker to create mock objects for the unit tests.

• JMUnit for running automated unit tests.

JMUnit supports two tasks, <jmunit> and <testlistener>, for running
automated tests. This user guide uses <testlistener> for running the tests
since the <jmunit> task requires more third-party libraries. The test reports
prepared by <testlistener> are parsed by the <junitreport> task in the
build script to generate an HTML test report.

2.2 A Note on Maven Support

If you’re using Maven for your builds (or, perhaps, Apache Ivy) you may want
to retrieve the Hammock JARs (i.e. artifacts) from a Maven repository. Hope-
fully the Hammock libraries will be added to the Apache Central Repository (a
JIRA ticket has been logged), in the interim you can retrieve the artifacts from
http://hammingweight.com/modules/hammock/m2repo/ (add the server URL
to your Maven settings.xml).

The groupId for the artifacts is net.sf.hammockmocks. The valid artifactIds
are:

• hammock core cldc10

• hammock core cldc11

• hammock midp10 cldc10

• hammock midp20 cldc10

• hammock midp20 cldc11

• hammockmaker

The current version of the artifacts is 2.1.0.
A future release of Hammock may add a Maven plug-in for HammockMaker.

3 Examples

3.1 Example 1: Setting and Verifying Expectations

In the first example, we want to test a class that uses an HttpConnection to
retrieve a name corresponding to an ID number from a web server. Listing 1
shows the skeleton of the class that we’re going to create. Notice that we have
a protected method that allows us to inject an HttpConnection into the class;
we’ll use this method to supply a mocked HttpConnection for testing.

The source code can be found in the examples/src directory of the Ham-
mock distribution.

4

Listing 1
package com . hammingweight . hammockexamples . example1 ;

import java . i o . IOException ;

import javax . mic roed i t i on . i o . Connector ;
import javax . mic roed i t i on . i o . HttpConnection ;

public c lass GetName {

protected Str ing getNameForId (HttpConnection conn , int id)
throws IOException {

return null ;
}

public Str ing getNameForId (int id) throws IOException {
return this . getNameForId ((HttpConnection) Connector

. open (" h t t p : / / e x a m p l e . c o m ") , id) ;
}

}

Listing 2 shows the JMUnit test case, GetNameTest, that we’ll extend to
exercise the GetName class. The code can be found in the examples/test di-
rectory.

Listing 2
package com . hammingweight . hammockexamples . example1 ;

import jmunit . framework . c ldc10 . TestCase ;

public c lass GetNameTest extends TestCase {

public GetNameTest () {
super (0 , " G e t N a m e T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
}

}

3.1.1 Creating a MockHttpConnection

Hammock is distributed with mocks of many MIDP classes. In particular, the
distribution includes a MockHttpConnection class. A mock object must be
associated with a method invocation handler. In this user guide, the handler
will always be an instance of the Hammock class. Listing 3 shows how we create a
Hammock handler and a MockHttpConnection instance. Notice that the handler
is set in the MockHttpConnection constructor.

Listing 3
package com . hammingweight . hammockexamples . example1 ;

import java . i o . IOException ;

import javax . mic roed i t i on . i o . HttpConnection ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hammock ;
import com . hammingweight . hammock . mocks . mic roed i t i on . i o . MockHttpConnection ;

public c lass GetNameTest extends TestCase {

// The O b j e c t u n d e r T e s t .
private GetName getName ;

// The mock o b j e c t h a n d l e r .
private Hammock hammock ;

// The mock o b j e c t (s) .
private MockHttpConnection mockConn ;

public void setUp () {
this . hammock = new Hammock () ;
this . mockConn = new MockHttpConnection (this . hammock) ;
this . getName = new GetName () ;

}

public GetNameTest () {
super (0 , " G e t N a m e T e s t ") ;

5

}

public void t e s t (int testNum) throws Throwable {
}

}

3.1.2 Setting an Expectation

Testing using mock objects involves three steps:

• Setting expectations that certain methods will be invoked on
the mock objects.

• Exercising the object under test (OUT).

• Verifying that the OUT invoked its (mocked) collaborators as
expected.

Initially, we’ll simply write a test that verifies that the GetNames class
closes the HttpConnection when we invoke the getNameForId() method. The
testGetNameForId() method in Listing 4 shows how we set an expectation that
the close() method will be invoked on the MockHttpConnection. Hammock
associates an identifier of the form MTHD XXX with every method exposed by the
mock object where XXX is the name of the method; e.g. MTHD CLOSE corresponds
to the close() method.

After setting the expectation that the close() method will be invoked, we
exercise the class by trying to get the name corresponding to identifier 1234.
Notice that we inject our mock object into the method that we’re testing. Finally
we call the verify() method on the Hammock handler to verify that our mock
object was invoked as expected.

Listing 4
public c lass GetNameTest extends TestCase {

// The O b j e c t u n d e r T e s t .
private GetName getName ;

// The mock o b j e c t h a n d l e r .
private Hammock hammock ;

// The mock o b j e c t (s) .
private MockHttpConnection mockConn ;

public void setUp () {
this . hammock = new Hammock () ;
this . mockConn = new MockHttpConnection (this . hammock) ;
this . getName = new GetName () ;

}

public void testGetNameForId () throws IOException {
// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
this . getName . getNameForId (this . mockConn , 1234) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

public GetNameTest () {
super (1 , " G e t N a m e T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testGetNameForId () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

6

If we run the test, an exception is thrown:

com.hammingweight.hammock.HammockException: A method was invoked less often
than expected.

Class: MockHttpConnection
Method: MTHD_CLOSE

To get the test to pass, we need to close the HttpConnection (see listing 5).

Listing 5
public c lass GetName {

protected Str ing getNameForId (HttpConnection conn , int id)
throws IOException {

conn . c l o s e () ;
return null ;

}

public Str ing getNameForId (int id) throws IOException {
return this . getNameForId ((HttpConnection) Connector

. open (" h t t p : / / e x a m p l e . c o m ") , id) ;
}

}

3.1.3 Passing Arguments to Mock Object Method Calls

The close() method is not very exciting since it takes no arguments nor does it
return a value. We’ll now consider setting an expectation that setRequestMethod(String
method) will be invoked. Listing 6 shows a test that sets an expectation that
the setRequestMethod() method will be invoked.

Listing 5
public void testGetNameForId () throws IOException {

// E x p e c t a t i o n s .
this . hammock

. se tExpectat ion (MockHttpConnection .MTHD SET REQUEST METHOD $ STRING) ;
this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
this . getName . getNameForId (this . mockConn , 1234) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

Notice the identifier MTHD SET REQUEST METHOD $ STRING; the ‘$’ indicates
that the method takes arguments and the ‘STRING’ indicates that the first
(and only) argument for the method is a String.

We’ve set an expectation that the setRequestMethod() method will be
invoked but the expectation isn’t satisfactory; we should specify whether the
request method is GET or POST. Fortunately, the setExpectation() method
of the Hammock class is overloaded so that we can supply expected arguments.
Listing 6 shows the improved test in which we set the expectation that the
request method will be POST. Expected arguments are passed as an array of
Objects.

Listing 6
public void testGetNameForId () throws IOException {

// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD SET REQUEST METHOD $ STRING,
new Object [] { HttpConnection .POST }) ;

this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
this . getName . getNameForId (this . mockConn , 1234) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

7

Listing 7 shows the getNameForId() method that allows the test in listing
6 to pass.

Listing 7
protected Str ing getNameForId (HttpConnection conn , int id)

throws IOException {
conn . setRequestMethod (HttpConnection .POST) ;
conn . c l o s e () ;
return null ;

}

3.1.4 Returning a Value from a Mock Object

The close() and setRequestMethod() methods do not return values. Fre-
quently we need to specify the value that a mock object must return when a
method is invoked; after setting an expectation we can chain a setReturnValue()
method invocation. Listing 8 sets the expectation that the OUT will open a
data output stream and we specify the DataOutputStream, dos, that must be
returned. The code in listing 8 also asserts that the identifier is written to the
output stream by checking the state of the output stream.

Listing 8
public void testGetNameForId () throws IOException {

// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD SET REQUEST METHOD $ STRING,
new Object [] { HttpConnection .POST }) ;

ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
DataOutputStream dos = new DataOutputStream (baos) ;
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD OPEN DATA OUTPUT STREAM)
. setReturnValue (dos) ;

this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
this . getName . getNameForId (this . mockConn , 1234) ;
DataInputStream d i s = new DataInputStream (new ByteArrayInputStream (baos

. toByteArray ())) ;
a s s e r tEqua l s (1234 , d i s . r eadInt ()) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

Finally, for this first test, we need to read from a DataInputStream and
return the result. The code is shown in listing 9.

Listing 9
public void testGetNameForId () throws IOException {

// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD SET REQUEST METHOD $ STRING,
new Object [] { HttpConnection .POST }) ;

ByteArrayOutputStream baos = new ByteArrayOutputStream () ;
DataOutputStream dos = new DataOutputStream (baos) ;
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD OPEN DATA OUTPUT STREAM)
. setReturnValue (dos) ;

ByteArrayOutputStream baos2 = new ByteArrayOutputStream () ;
new DataOutputStream (baos2) . writeUTF (" C a r l M e i j e r ") ;
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD OPEN DATA INPUT STREAM) . setReturnValue (
new DataInputStream (new ByteArrayInputStream (baos2

. toByteArray ()))) ;
this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
as s e r tEqua l s (" C a r l M e i j e r " , this . getName . getNameForId (this . mockConn , 1234)) ;
DataInputStream d i s = new DataInputStream (new ByteArrayInputStream (baos

. toByteArray ())) ;
a s s e r tEqua l s (1234 , d i s . r eadInt ()) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

Listing 10 shows the code that we wrote to get this test to pass.

8

Listing 10
protected Str ing getNameForId (HttpConnection conn , int id)

throws IOException {
conn . setRequestMethod (HttpConnection .POST) ;
conn . openDataOutputStream () . wr i t e In t (id) ;
S t r ing r e s u l t = conn . openDataInputStream () . readUTF () ;
conn . c l o s e () ;
return r e s u l t ;

}

Note that there is a significant problem with the code in listing 10: the
DataInputStream and DataOutputStreams are never closed. If we had used
mocked streams we could have set expectations that close() method is invoked
on the streams.

3.1.5 Using MockDataInputStream and MockDataOuputStream

If you look at the classes or JavaDocs distributed with Hammock, you’ll notice
that the distribution includes mocks of DataInputStream and DataOutputStream.
We could have returned a MockDataOutputStream when opening a DataOutputStream
on the MockHttpConnection. However this would have posed a problem since
the writeInt() method of DataOutputStream is final and, consequently, the
method can’t be mocked. If you look at the MockDataOutputStream class, you
will see that there is no method identifier called MTHD WRITE INT $ INT.

The declaration of classes or methods as final can make using mock objects
difficult; the fourth example of this section shows how to work around the
problems of testing classes with final methods.

3.1.6 Throwing an IOException

One of the advantages of using mock objects is that we can get them to exhibit
behavior that needs to be tested but that can be difficult to produce in a real
collaborator. For example, we should test that even if an IOException is thrown
that the HTTPConnection is closed. Listing 11 sets an expectation that the
setRequestMethod() will be called and the behavior that an IOException will
be thrown when this happens. We can specify that a method must throw an
exception via the setThrowable() method.

Listing 11
public void t e s tC lo s eAf t e r IoExcept i on () {

// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD SET REQUEST METHOD $ STRING)
. setThrowable (new IOException ()) ;

this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;
this . hammock . s e tS t r i c tOrde r i ng () ;

// E x e r c i s e .
try {

this . getName . getNameForId (this . mockConn , 1234) ;
f a i l (" I O E x c e p t i o n s h o w l d h a v e b e e n t h r o w n ") ;

} catch (IOException i o e) {
// E x p e c t e d .

}

// V e r i f y .
this . hammock . v e r i f y () ;

}

The code in listing 11 illustrates the use of the setStrictOrdering() method;
by default Hammock doesn’t care in what order methods are invoked on mock
objects. If we specify strict ordering the methods must be invoked in the or-
der specified in the expectations. Mock objects that require that methods be
invoked in some order are known as strict mocks.

If we run the above test against the code in listing 10, our unit test fails:

9

com.hammingweight.hammock.HammockException: A method was invoked less often
than expected.

Class: MockHttpConnection
Method: MTHD_CLOSE

We need to refactor the code of listing 10 so that both tests pass; the result
is in listing 12.

Listing 12
protected Str ing getNameForId (HttpConnection conn , int id)

throws IOException {
try {

conn . setRequestMethod (HttpConnection .POST) ;
conn . openDataOutputStream () . wr i t e In t (id) ;
return conn . openDataInputStream () . readUTF () ;

} f ina l ly {
conn . c l o s e () ;

}
}

3.2 Example 2: Creating Mock Objects

The previous example used the MockHttpConnection class that is supplied with
Hammock. Often, though, you will want to mock your own classes. For example,
if your application has a layered architecture, you may want to mock the layer
that the class under test interacts with. Also if a class needs to persist data or
retrieve persisted data it can be better to mock your persistence code or your
DAO since the setUp() and tearDown() code for persistence can be substantial,
slow and brittle (any change to the DAO may break the setUp() code).

In the example in this section we assume that we have a Persistence class
that can save Hashtables where the keys and values are Strings. Classes that
need to be persisted will have an associated DAO class that can convert an
instance of the class to a Hashtable representation.

3.2.1 The Persistence Class

Listing 13 shows the skeleton of our Persistence class. We might, conceivably,
have more than one implementation of this class; for example one implementa-
tion that uses the RecordStore and another that uses the the file system if the
device supports JSR 75 (PDA API).

Listing 13
package com . hammingweight . hammockexamples . example2 ;

import java . u t i l . Hashtable ;

public c lass Per s i s t en c e {

/∗∗
∗
∗ @param c l a z z
∗ The o r i g i n a l c l a s s o f t h e p e r s i s t e d o b j e c t .
∗ @param i d
∗ An i d e n t i f i e r (o r p r im a r y k e y) f o r t h e o b j e c t .
∗ @param d a t a
∗ A r e p r e s e n t a t i o n o f t h e o b j e c t t o b e s e r i a l i z e d .
∗/

public void p e r s i s t (Class c lazz , int id , Hashtable data) {

}
}

10

3.2.2 The Person and PersonDao Classes

In this example we’ll write code to persist the details of a person. For our
purposes, a person is simply somebody who has a first and last name as shown
in listing 14.

Listing 14
package com . hammingweight . hammockexamples . example2 ;

public c lass Person {

private Str ing f irstName ;

private Str ing lastName ;

public Person (St r ing firstName , St r ing lastName) {
this . f i rstName = firstName ;
this . lastName = lastName ;

}

public Str ing getFirstName () {
return this . f i rstName ;

}

public Str ing getLastName () {
return this . lastName ;

}

}

The PersonDao class that interacts with the persistence layer is shown in
listing 15. We need to implement the persist() method. Note the dependency
on a Random instance; the PersonDao will use the Random object for generating
an identifier when persisting the Person instance.

Listing 15
package com . hammingweight . hammockexamples . example2 ;

import java . u t i l .Random ;

public c lass PersonDao {

private Per s i s t en c e p e r s i s t e n c e ;

private Random random ;

public void s e tP e r s i s t e n c e (Pe r s i s t en c e p e r s i s t e n c e) {
this . p e r s i s t e n c e = pe r s i s t e n c e ;

}

public void setRandom(Random random) {
this . random = random ;

}

public void p e r s i s t (Person person) {
}

}

3.2.3 Mocking the Persistence Class

Before we can test the PersonDao class, we will need to mock the Persistence
class. The build.xml script includes the following lines that create a mock of
the Persistence class using the <hammockmaker> task:

<!-- Create mock objects for our tests. -->
<hammockmaker usecldc11="true" dir="${test.dir}"

package="com.hammingweight.hammockexamples.mocks" classpath="${src.build.dir}">
<mock class="com.hammingweight.hammockexamples.example2.Persistence" />

</hammockmaker>

The mock object source code is created in the com.hammingweight.hammockexamples.mocks
package as specified in the package attribute of the hammockmaker element.
The name of the mocked class is MockPersistence; HammockMaker prepends

11

the word “Mock” to the mocked class name. The useCldc11 attribute of the
<hammockmaker> task determines whether the source code should be compati-
ble with CLDC 1.1 or with CLDC 1.0; code generated for CLDC 1.1 is larger
but produces more useful error messages when a mock object is unexpectedly
invoked. The dir attribute of the task specifies the directory where the source
code for the mock object will be written.

Notice that the mock object that we created is a mock of a concrete class;
HammockMaker can mock interfaces and non-final classes. You can only set ex-
pectations for methods that are non-final when mocking a class; where possible
it is better to mock interfaces rather than classes. However in Java ME it is
common to avoid interfaces since every interface adds to the size of the deployed
application.

3.2.4 Testing the PersonDao Class

Listing 16 tests the persist() method of the PersonDao class. There are several
things to note in the test:

• The test uses two mock objects but needs only one instance of
a Hammock.

• We are setting an expectation that a random ID will be gener-
ated for the persisted object.

• We are setting a delay of 500 milliseconds before the MockPersistence
class responds to a method invocation.

• We are specifying that the the Random class will be invoked at
least once and at most three times.

• When returning an int value from a method, we need to wrap
it in an Integer.

Setting the delay (using setDelay()) actually serves no purpose here but can
be useful when testing multithreaded applications where you want to ensure that
one action completes before another. Similarly, specifying that the Random class
may be invoked more than once also serves no purpose but simply illustrates
some functionality that Hammock provides.

Listing 16
package com . hammingweight . hammockexamples . example2 ;

import java . u t i l . Hashtable ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hammock ;
import com . hammingweight . hammock . mocks . u t i l .MockRandom ;
import com . hammingweight . hammockexamples . example2 . Person ;
import com . hammingweight . hammockexamples . example2 . PersonDao ;
import com . hammingweight . hammockexamples . mocks . MockPers istence ;

public c lass PersonDaoTest extends TestCase {

// The OUT .
private PersonDao personDao ;

// The h a n d l e r and mock (s)
private Hammock hammock ;
private MockPersistence mockPers istence ;
private MockRandom mockRandom ;

public void setUp () {
this . hammock = new Hammock () ;

12

this . mockPers istence = new MockPersistence (this . hammock) ;
this .mockRandom = new MockRandom(this . hammock) ;
this . personDao = new PersonDao () ;
this . personDao . s e tP e r s i s t e n c e (this . mockPers istence) ;
this . personDao . setRandom(this .mockRandom) ;

}

public void t e s t P e r s i s t () {
// E x p e c t a t i o n s .
// The Random o b j e c t s h o u l d b e a s k e d t o g e n e r a t e a random ID .
// Our random v a l u e i s −42.
this . hammock . se tExpectat ion (MockRandom .MTHD NEXT INT) . setReturnValue (

new In t ege r (−42)). set Invocat ionCount (1 , 3) ;
// A H a s h t a b l e w i t h t h e f i r s t and l a s t names s h o u l d b e p e r s i s t e d .
Hashtable h = new Hashtable () ;
h . put (" f n a m e " , " C a r l ") ;
h . put (" l n a m e " , " M e i j e r ") ;
this . hammock . se tExpectat ion (

MockPersistence .MTHD PERSIST $ CLASS INT HASHTABLE ,
new Object [] { new Person (" " , " ") . ge tClas s () , new In t ege r (−42) ,

h }) . setDelay (500) . setArgumentMatcher (2 ,
new HashtableMatcher ()) ;

// E x e r c i s e .
this . personDao . p e r s i s t (new Person (" C a r l " , " M e i j e r ")) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

public PersonDaoTest () {
super (1 , " P e r s o n D a o T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

t e s t P e r s i s t () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

After writing the test, we write the code to pass the test. Listing 17 shows
our implementation of the persist() method:

Listing 17
public void p e r s i s t (Person person) {

Hashtable h = new Hashtable () ;
h . put (" f n a m e " , person . getFirstName ()) ;
h . put (" l n a m e " , person . getLastName ()) ;
this . p e r s i s t e n c e . p e r s i s t (person . getClas s () , this . random . nextInt () , h) ;

}

Unfortunately, when we run our test it fails:

com.hammingweight.hammock.HammockException: A method was unexpectedly invoked.
Hint: Check the method, the expected number of invocations,
the method arguments and the mock object.

Class: MockPersistence
Method: MTHD_PERSIST_$_CLASS_INT_HASHTABLE

The reason for the failure is that HammockMaker compares the expected
and actual Hashtable arguments using the equals() method. Since the actual
and expected Hashtables reference different instances they are not regarded
as equal. The simplest way to ‘fix’ this problem is simply to ignore the third
argument in the expectation as follows:

this.hammock.setExpectation(
MockPersistence.MTHD_PERSIST_$_CLASS_INT_HASHTABLE,
new Object[] { Person.class, new Integer(-42), h }).setDelay(
500).ignoreArgument(2);

13

(Note that arguments are indexed from zero, so 2 corresponds to the method’s
third argument.)

A better way to fix the problem is to check whether the Hashtables con-
tain the same data. This can be done by implementing an IArgumentMatcher.
Listing 18 shows a class that tests whether two Hashtables are equal for our
purposes.

Listing 18
package com . hammingweight . hammockexamples . example2 ;

import java . u t i l . Enumeration ;
import java . u t i l . Hashtable ;

import com . hammingweight . hammock . IArgumentMatcher ;

public c lass HashtableMatcher implements IArgumentMatcher {

public boolean areArgumentsEqual (Object expected , Object ac tua l) {
i f (! (ac tua l instanceof Hashtable)) {

return fa l se ;
}

Hashtable e = (Hashtable) expected ;
Hashtable a = (Hashtable) ac tua l ;

i f (e . s i z e () != a . s i z e ()) {
return fa l se ;

}

Enumeration en = e . keys () ;
while (en . hasMoreElements ()) {

Object key = en . nextElement () ;
i f (! e . get (key) . equa l s (a . get (key))) {

return fa l se ;
}

}
return true ;

}

}

We can use our HashtableMatcher class to check that our MockPersistence
class is invoked as expected with the following code change:

this.hammock.setExpectation(
MockPersistence.MTHD_PERSIST_$_CLASS_INT_HASHTABLE,
new Object[] { Person.class, new Integer(-42), h }).setDelay(
500).setArgumentMatcher(2, new HashtableMatcher());

3.3 Example 3: Modifying Arguments in Mocked Meth-
ods

A mocked method can return a value specified using the setReturnValue()
method. Sometimes though a mutable Object will be passed to a method and
the method must change the state of the Object. The next example shows how
to achieve this in a mocked object.

A stream cipher is an encryption scheme where the bytes of a message
are XORed with a pseudorandom sequence to produce ciphertext. Decryp-
tion works exactly the same way; the bytes of the ciphertext are XORed with
the pseudorandom byte stream to produce the original plaintext. We’ll test a
StreamCipher class that collaborates with a PseudoRandomByteStream.

Listing 19 shows the interface for the PseudoRandomByteStream. The im-
portant point to note is that we pass a byte array to the generateBytes()
method which will populate the array with pseudorandom bytes. If we use a
mocked PseudoRandomByteStream we need some way of populating the array.

14

Listing 19
package com . hammingweight . hammockexamples . example3 ;

public interface PseudoRandomByteStream {

public void generateBytes (byte [] stream) ;
}

Listing 20 shows the implementation the StreamCipher class. Notice that
there are two PseudoRandomByteStream collaborators: one for encryption and
one for decryption.

Listing 20
package com . hammingweight . hammockexamples . example3 ;

public c lass StreamCipher {

private PseudoRandomByteStream encStream , decStream ;

public StreamCipher (PseudoRandomByteStream encStream ,
PseudoRandomByteStream decStream) {

this . encStream = encStream ;
this . decStream = decStream ;

}

public byte [] encrypt (byte [] p l a i n t ex t) {
byte [] rnd = new byte [p l a i n t ex t . l ength] ;
this . encStream . generateBytes (rnd) ;
for (int i = 0 ; i < rnd . l ength ; i++) {

rnd [i] ˆ= p l a i n t ex t [i] ;
}
return rnd ;

}

public byte [] decrypt (byte [] c i phe r t ex t) {
byte [] rnd = new byte [c i phe r t ex t . l ength] ;
this . decStream . generateBytes (rnd) ;
for (int i = 0 ; i < rnd . l ength ; i++) {

rnd [i] ˆ= c iphe r t ex t [i] ;
}
return rnd ;

}
}

Listing 21 shows the TestCase that exercises the StreamCipher’s encrypt()
and decrypt() methods.

Listing 21
package com . hammingweight . hammockexamples . example3 ;

import java . i o . UnsupportedEncodingException ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hammock ;
import com . hammingweight . hammock . IArgumentMatcher ;
import com . hammingweight . hammock . PopulateArrayMatcher ;
import com . hammingweight . hammockexamples . mocks . MockPseudoRandomByteStream ;

public c lass StreamCipherTest extends TestCase {

// The OUT .
private StreamCipher streamCipher ;

// The h a n d l e r and mock (s) .
private Hammock hammock ;
private MockPseudoRandomByteStream mockStream1 , mockStream2 ;

public void setUp () {
this . hammock = new Hammock () ;
this . mockStream1 = new MockPseudoRandomByteStream(this . hammock) ;
this . mockStream2 = new MockPseudoRandomByteStream(this . hammock) ;
this . streamCipher = new StreamCipher (this . mockStream1 , this . mockStream2) ;

}

public void testEncrypt () throws UnsupportedEncodingException {
// E x p e c t a t i o n s .
byte [] b = { 1 , 2 , 3 , 4 , 5 } ;
this . hammock . se tExpectat ion (

MockPseudoRandomByteStream .MTHD GENERATE BYTES $ ARRAY BYTE,
this . mockStream1 , new Object [] { b }) . setArgumentMatcher (0 ,
new IArgumentMatcher () {

public boolean areArgumentsEqual (Object expected ,
Object ac tua l) {

byte [] e = (byte []) expected ;
byte [] a = (byte []) ac tua l ;
System . arraycopy (e , 0 , a , 0 , e . l ength) ;
return true ;

15

}

}) ;

// E x e r c i s e .
byte [] msg = " h e l l o " . getBytes (" U T F 8 ") ;
byte [] c i phe r t ex t = this . streamCipher . encrypt (msg) ;
a s s e r tEqua l s (5 , c i phe r t ex t . l ength) ;
for (int i = 0 ; i < 5 ; i++) {

as s e r tEqua l s (msg [i] ˆ (i + 1) , c i phe r t ex t [i]) ;
}

// V e r i f y .
this . hammock . v e r i f y () ;

}

public void testDecrypt () {
// E x p e c t a t i o n s .
byte [] b = { 0x55 , 0x55 , 0x55 , 0x55 } ;
this . hammock . se tExpectat ion (

MockPseudoRandomByteStream .MTHD GENERATE BYTES $ ARRAY BYTE,
new Object [] { b }) . setArgumentMatcher (0 ,
new PopulateArrayMatcher (0 , 4 , 0)) ;

// E x e r c i s e .
byte [] msg = { 1 , 2 , 4 , 8 } ;
byte [] p l a i n t ex t = this . streamCipher . decrypt (msg) ;
a s s e r tEqua l s (4 , p l a i n t ex t . l ength) ;
for (int i = 0 ; i < 4 ; i++) {

as s e r tEqua l s (msg [i] ˆ 0x55 , p l a i n t ex t [i]) ;
}

// V e r i f y .
this . hammock . v e r i f y () ;

}

public StreamCipherTest () {
super (2 , " S t r e a m C i p h e r T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testEncrypt () ;
break ;

case 1 :
testDecrypt () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

In the testEncrypt() method we use an argument matcher to change the
contents of the actual argument passed using the expected argument. An in-
teresting point illustrated in this test is that we have two mocked instances
of PseudoRandomByteStream; notice that the setExpectation() method has
an overloaded form in which we specify that the method must be invoked on
mockStream1.

While we can implement our own IArgumentMatcher to change any mutable
object, populating arrays is such a common requirement that Hammock pro-
vides a convenience matcher, PopulateArrayMatcher, specifically for this task.
The testDecrypt() method illustrates the use of the convenience class. The
constructor for PopulateArrayMatcher, takes three int arguments: the first
argument is the offset from which to start copying from the array passed in the
expectation, the second argument is the number of array elements to copy and
the third argument is the offset in the destination (actual argument) array to
start copying to.

3.4 Example 4: Refactoring for Testability

In the first example, we saw that it was impractical to test using a MockDataOutputStream
since the methods that would be invoked on the mock object were declared final.
This is a well known problem when testing with mock objects. In section 7.4

16

of “JUnit in Action” (Manning, 2004) Vincent Massol presents a similar exam-
ple of testing where a class collaborates with an instance of the final Java SE
URL class. We illustrate Massol’s solution to the problem using the refactoring
technique known as Class factory refactoring.

It can be seen as a disadvantage of mock objects that we have to refactor our
code to make it testable. However we might also conclude that the refactoring
improves the quality of our code.

3.4.1 Refactoring the GetName Example

Listing 22 introduces a factory class for opening input and output streams.
Important features of the interface are:

• The factory returns instances of DataInput and DataOutput
rather than DataInputStream and DataOutputStream allowing
us to program to an interface rather than an implementation.

• There are no references to HttpConnection meaning that our
code that needs to read and write to the input and output
streams does not need to include any code for managing the
HttpConnection. This change should improve the code’s read-
ability and simplify switching from HTTP to HTTPS, Blue-
tooth or even SMS by replacing the factory class implementa-
tion.

• A bug in the code of listing 10 was that we did not close the
input and output streams; adding this boilerplate code would
have made the code less readable. Our interface exposes a
method closeConnections() that takes care of closing any
streams returned by the factory.

Listing 22
package com . hammingweight . hammockexamples . example4 ;

import java . i o . DataInput ;
import java . i o . DataOutput ;
import java . i o . IOException ;

public interface ConnectionFactory {

public void openConnections (St r ing r e l a t i v ePath) throws IOException ;

public DataInput getInputConnection () throws IOException ;

public DataOutput getOutputConnection () throws IOException ;

public void c lo seConnect ions () ;
}

Listing 23 shows our TestCase for testing our class that collaborates with a
ConnectionFactory to get the name corresponding to an ID.

Listing 23
package com . hammingweight . hammockexamples . example4 ;

import java . i o . IOException ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hammock ;
import com . hammingweight . hammock . mocks . i o . MockDataInput ;
import com . hammingweight . hammock . mocks . i o . MockDataOutput ;
import com . hammingweight . hammockexamples . mocks . MockConnectionFactory ;

public c lass GetName2Test extends TestCase {

17

// The OUT .
private GetName2 getName ;

// The h a n d l e r and mock (s)
private Hammock hammock ;
private MockConnectionFactory mockConnFactory ;
private MockDataOutput mockDataOutput ;
private MockDataInput mockDataInput ;

public void setUp () {
this . hammock = new Hammock () ;
this . mockConnFactory = new MockConnectionFactory (this . hammock) ;
this . mockDataOutput = new MockDataOutput (this . hammock) ;
this . mockDataInput = new MockDataInput (this . hammock) ;
this . getName = new GetName2(this . mockConnFactory) ;

}

public void testGetNameForId () throws IOException {
// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockConnectionFactory .MTHD OPEN CONNECTIONS $ STRING,
new Object [] { " g e t n a m e . i n m " }) ;

this . hammock . se tExpectat ion (
MockConnectionFactory .MTHD GET OUTPUT CONNECTION)
. setReturnValue (this . mockDataOutput) ;

this . hammock . se tExpectat ion (MockDataOutput .MTHD WRITE INT $ INT ,
new Object [] { new In t ege r (1234) }) ;

this . hammock . se tExpectat ion (
MockConnectionFactory .MTHD GET INPUT CONNECTION)
. setReturnValue (this . mockDataInput) ;

this . hammock . se tExpectat ion (MockDataInput .MTHD READ UTF)
. setReturnValue (" C a r l M e i j e r ") ;

this . hammock . se tExpectat ion (MockConnectionFactory .MTHD CLOSE CONNECTIONS) ;

// E x e r c i s e .
as s e r tEqua l s (" C a r l M e i j e r " , this . getName . getNameForId (1234)) ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

public void t e s tC l o s e () {
// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockConnectionFactory .MTHD OPEN CONNECTIONS $ STRING)
. setThrowable (new IOException ()) ;

this . hammock . se tExpectat ion (MockConnectionFactory .MTHD CLOSE CONNECTIONS) ;

// E x e r c i s e .
try {

this . getName . getNameForId (1234) ;
f a i l (" A N I O E x c e p t i o n s h o u l d h a v e b e e n t h r o w n . ") ;

} catch (IOException e) {
// E x p e c t e d .

}

// V e r i f y .
this . hammock . v e r i f y () ;

}

public GetName2Test () {
super (2 , " G e t N a m e 2 T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testGetNameForId () ;
break ;

case 1 :
t e s tC l o s e () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

Listing 24 shows our implementation of the code to pass the tests of listing
23.

Listing 24
package com . hammingweight . hammockexamples . example4 ;

import java . i o . IOException ;

public c lass GetName2 {

private ConnectionFactory connFactory ;

public GetName2(ConnectionFactory connFactory) {

18

this . connFactory = connFactory ;
}

public Str ing getNameForId (int id) throws IOException {
try {

this . connFactory . openConnections (" g e t n a m e . i n m ") ;
this . connFactory . getOutputConnection () . wr i t e In t (id) ;
return this . connFactory . getInputConnect ion () . readUTF () ;

} f i na l ly {
this . connFactory . c lo seConnect ions () ;

}
}

}

3.4.2 An HttpConnectionFactory

Listing 25 shows an implementation of the ConnectionFactory interface that
uses HTTP.

Listing 25
package com . hammingweight . hammockexamples . example4 ;

import java . i o . DataInput ;
import java . i o . DataInputStream ;
import java . i o . DataOutput ;
import java . i o . DataOutputStream ;
import java . i o . IOException ;

import javax . mic roed i t i on . i o . Connector ;
import javax . mic roed i t i on . i o . HttpConnection ;

public c lass HttpConnectionFactory implements ConnectionFactory {

private Str ing host ;

private HttpConnection httpConn ;

private DataOutputStream dos ;

private DataInputStream d i s ;

public HttpConnectionFactory (St r ing host) {
this . host = host ;

}

public void c lo seConnect ions () {
i f (this . dos != null) {

try {
this . dos . c l o s e () ;

} catch (IOException e) {
}

}

i f (this . d i s != null) {
try {

this . d i s . c l o s e () ;
} catch (IOException e) {
}

}

i f (this . httpConn != null) {
try {

this . httpConn . c l o s e () ;
} catch (IOException e) {
}

}

this . dos = null ;
this . d i s = null ;
this . httpConn = null ;

}

public DataInput getInputConnection () throws IOException {
this . d i s = this . httpConn . openDataInputStream () ;
return this . d i s ;

}

public DataOutput getOutputConnection () throws IOException {
this . dos = this . httpConn . openDataOutputStream () ;
return this . dos ;

}

protected void openConnections (HttpConnection httpConn) throws IOException {
this . httpConn = httpConn ;
this . httpConn . setRequestMethod (HttpConnection .GET) ;

}

public void openConnections (St r ing r e l a t i v ePath) throws IOException {
openConnections ((HttpConnection) Connector . open (" h t t p : / / " + this . host

+ " / " + re l a t i v ePath)) ;
}

19

}

Naturally, the code of listing 25 was tested. Listing 26 shows the test that we
wrote (note that we used a MockHttpConnection for testing our HTTP factory
class).

Listing 26
package com . hammingweight . hammockexamples . example4 ;

import java . i o . ByteArrayInputStream ;
import java . i o . ByteArrayOutputStream ;
import java . i o . IOException ;

import javax . mic roed i t i on . i o . HttpConnection ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hammock ;
import com . hammingweight . hammock . mocks . i o . MockDataInputStream ;
import com . hammingweight . hammock . mocks . i o . MockDataOutputStream ;
import com . hammingweight . hammock . mocks . mic roed i t i on . i o . MockHttpConnection ;

public c lass HttpConnectionFactoryTest extends TestCase {

// The OUT .
private HttpConnectionFactory httpConnFactory ;

// The h a n d l e r and mock (s) .
private Hammock hammock ;
private MockHttpConnection mockHttpConn ;
private MockDataOutputStream mockDataOutputStream ;
private MockDataInputStream mockDataInputStream ;

public void setUp () {
this . hammock = new Hammock () ;
this . mockHttpConn = new MockHttpConnection (this . hammock) ;
this . mockDataOutputStream = new MockDataOutputStream (

new ByteArrayOutputStream () , this . hammock) ;
this . mockDataInputStream = new MockDataInputStream (

new ByteArrayInputStream (" " . getBytes ()) , this . hammock) ;
this . httpConnFactory = new HttpConnectionFactory (" e x a m p l e . c o m ") ;

}

public void testOpenAndClose () throws IOException {
// E x p e c t a t i o n s .
this . hammock . se tExpectat ion (

MockHttpConnection .MTHD SET REQUEST METHOD $ STRING,
new Object [] { HttpConnection .GET }) ;

this . hammock . se tExpectat ion (
MockHttpConnection .MTHD OPEN DATA OUTPUT STREAM)
. setReturnValue (this . mockDataOutputStream) ;

this . hammock . se tExpectat ion (
MockHttpConnection .MTHD OPEN DATA INPUT STREAM) . setReturnValue (
this . mockDataInputStream) ;

this . hammock . se tExpectat ion (MockDataOutputStream .MTHD CLOSE) ;
this . hammock . se tExpectat ion (MockDataInputStream .MTHD CLOSE) ;
this . hammock . se tExpectat ion (MockHttpConnection .MTHD CLOSE) ;

// E x e r c i s e .
this . httpConnFactory . openConnections (this . mockHttpConn) ;
this . httpConnFactory . getInputConnect ion () ;
this . httpConnFactory . getOutputConnection () ;
this . httpConnFactory . c lo seConnect ions () ;
// C l o s e a g a i n , t o c h e c k t h a t t h e H t t pC o n n e c t i o n , D a t aOu t p u t S t r e am and
// D a t a I n p u t S t r e am a r e c l o s e d o n l y on c e .
this . httpConnFactory . c lo seConnect ions () ;

// V e r i f y .
this . hammock . v e r i f y () ;

}

public HttpConnectionFactoryTest () {
super (1 , " H t t p C o n n e c t i o n F a c t o r y T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testOpenAndClose () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

20

4 Effective Testing with Mocks

Here are some tips for effective testing with mock objects:

• Not all tests need mock objects; if most of your tests don’t use
mock objects that’s probably OK.

• If you need to to set lots of expectations, your test is going to
be brittle and refactoring will be difficult. If a single test uses
more than two mock objects and sets more than five expecta-
tions, the method that you’re testing may be doing too much.
Try to decompose the method into smaller submethods that
do less and test those separately. The submethods could have
package or protected access so that your unit tests can ac-
cess the methods but collaborators can only invoke the methods
indirectly through the original, public method.

• Most of your mocks should be of your own classes; it’s unlikely
that using a MockVector offers advantages over a real Vector
except in certain, rare situations (e.g. a method should retrieve
the 100-th element from a Vector and you don’t want to pop-
ulate a Vector with 99 irrelevant items when you could simply
set an expectation that the 100-th element will be read).

• Using mocks of networking Objects (e.g. a MockHttpConnection
or a MockMessage) can be advantageous since unit tests that
establish real connections are fragile and slow. However, even
when testing connectivity, consider adding another level of ab-
straction so that your classes don’t need to be aware of the
particular network protocol (e.g. provide a factory class that
provides input and output streams so that your class under
test doesn’t need boilerplate code for setting HTTP connec-
tion properties and methods).

• Persistence is a common requirement of Java ME applications.
Create DAOs that marshall and unmarshall your domain ob-
jects for storage in the RecordStore. Use mocked DAOs in your
tests since this simplifies your tests’ setUp() and tearDown()
code. The use of DAOs results in more loosely coupled-code
than if your domain objects are littered with RecordStore
logic. Note that it is not possible to mock the RecordStore
class but in practice you don’t need to; your DAOs should be
tested with real record stores in any case.

5 Conclusions

This user guide introduced the Hammock mock object library. Specifically it
covered:

• The Hammock class for handling invocations of mock objects.

21

• The use of some of the pre-built MIDP mock objects (e.g.
MockHttpConnection, MockDataInput and MockRandom).

• How to build mock objects using the <hammockmaker> task.

• How to set expectations that a method will be invoked (using
the setExpectation() method).

• How to return values (via setReturnValue()) and throw ex-
ceptions (via setThrowable()).

• How to verify that a mock object was invoked as expected (us-
ing the verify() method).

• How to use argument matchers (by creating instances of IArgumentMatcher)
and to ignore method arguments (using ignoreArgument()).

• How to populate arrays using the PopulateArrayMatcher class
and to modify other mutable Object arguments using IArgumentMatchers.

• How to control the behavior of a mock object using the setDelay(),
setStrictOrdering() and setNumberInvocations() meth-
ods.

22

