
Using Hammock’s Spy Objects
Test Doubles for Java ME

Carl Meijer

June 2009

1 Spy Objects

1.1 Introduction

Any unit test consists of the following:

• Set up code (possibly in a setUp() fixture for several tests).

• Code that exercises the object under test (OUT).

• Code that verifies that the OUT behaved correctly (typically
with assert() statements).

• Possibly some tearDown code.

When one compares tests using mock objects to those that don’t, one will see
that the verification code is greatly reduced. Frequently, when using mocks, the
verification code may consist of a single call to a verify method. By comparison,
testing with real collaborators typically involves far more verification code; for
example, there may be several asserts to verify that the collaborator states
have been changed correctly by the OUT. The reduced verification code when
using mocks may come at the expense of more set up code though; expectations
have to be specified for the mocks (although configuring real collaborators can
also be code-intensive).

The use of spy objects rather than mock objects has the benefit of using test
doubles but can result in test code that more closely resembles tests using real
collaborators. The coding idiom associated with spy objects is sometimes known
by the acronym AAA for Arrange-Act-Assert. “Arrange” refers to setting up
the test, “Act” refers to exercising the OUT and “Assert” refers to the use of
assertions to verify interactions with test doubles.

For testing in Java, Mockito is the dominant test double framework that
uses spy objects.

Hammock supports a method invocation handler, Hamspy, that provides sup-
port for the AAA idiom.

This document doesn’t make the claim that spy objects are better or worse
than mock objects; the choice of a coding idiom is a matter of preference.

1

2 A Spy Object Example

The example can be found in the com.hammingweight.hammockexamples.example5
package of the examples directory of the Hammock distribution.

For this example we want to test a class (that extends LCDUI List) that
must be populated with a list of previously made flight reservations. The
ViewBookingsList class collaborates with two other classes: A Logger class
that we use for logging our application’s activities and a FlightBookingDAO
class that allows us to retrieve details about airline reservations.

2.1 The Collaborating Classes

2.1.1 The Logger Interface

Listing 1 defines our Logger interface that allows us to log at two levels: debug
and production.

Listing 1
package com . hammingweight . hammockexamples . example5 ;

public interface Logger {

public void debug (St r ing s) ;

public void debug (St r ing s , Throwable e) ;

public void product ion (St r ing s) ;

public void product ion (St r ing s , Throwable e) ;

}

As an aside, J2ME Polish has rather nice preprocessor directives for logging.
MicroLog (texttthttp://microlog.sourceforge.net looks like it might be very nice
as well.

2.1.2 The FlightBookingDAO Interface

Listing 2 defines the FlightBookingDAO that allows us to get an array of
FlightBookings.

Listing 2
package com . hammingweight . hammockexamples . example5 ;

public interface FlightBookingDAO {

public FlightBooking [] getAl lBookings () ;

}

The FlightBooking class is a very simple immutable class as shown in listing
3.

Listing 3
package com . hammingweight . hammockexamples . example5 ;

public c lass FlightBooking {

private Str ing flightNum ;

private Str ing dateTime ;

private Str ing reservat ionCode ;

private Str ing o r i g ;

private Str ing dest ;

public FlightBooking (St r ing flightNum , St r ing dateTime ,
St r ing reservat ionCode , St r ing or ig , S t r ing dest) {

2

this . f l ightNum = flightNum ;
this . dateTime = dateTime ;
this . r e servat ionCode = reservat ionCode ;
this . o r i g = o r i g ;
this . dest = dest ;

}

public Str ing getDateTime () {
return this . dateTime ;

}

public Str ing getFlightNum () {
return this . f l ightNum ;

}

public Str ing getReservationCode () {
return this . r e servat ionCode ;

}

public Str ing getOrig () {
return this . o r i g ;

}

public Str ing getDest () {
return this . dest ;

}

}

2.2 The ViewBookingsList

Class Listing 4 shows the skeleton of the class that we’re going to test.

Listing 4
package com . hammingweight . hammockexamples . example5 ;

import javax . mic roed i t i on . l c du i . L i s t ;

public c lass ViewBookingsList extends L i s t {

public ViewBookingsList (Logger log , FlightBookingDAO bookingDao) {
super (" Y o u r B o o k i n g s " , L i s t . IMPLICIT) ;

}

}

2.3 Spying on an Interaction

We want to verify that the constructor of the ViewBookingsList logs, at the
debug level, when it is invoked. Listing 5 shows a test case that asserts that
there is one call to the debug() method of our mocked Logger.

Listing 5
package com . hammingweight . hammockexamples . example5 ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hamspy ;
import com . hammingweight . hammock . MethodInvocation ;
import com . hammingweight . hammockexamples . mocks . MockFlightBookingDAO ;
import com . hammingweight . hammockexamples . mocks . MockLogger ;

public c lass ViewBookingsListTest extends TestCase {

// The s p y h a n d l e r
private Hamspy hamspy ;

// The mock o b j e c t (s)
private MockLogger mockLogger ;
private MockFlightBookingDAO mockBookingDao ;

public void setUp () {
this . hamspy = new Hamspy () ;
this . mockLogger = new MockLogger (this . hamspy) ;
this . mockBookingDao = new MockFlightBookingDAO(this . hamspy) ;

}

public void t e s tCons t ruc to r () {
// A r r a n g e

// Ac t
ViewBookingsList book ingsL i s t = new ViewBookingsList (this . mockLogger ,

this . mockBookingDao) ;

3

// A s s e r t s .
as s e r tEqua l s (1 , this . hamspy

. ge t Invoca t i on s (MockLogger .MTHD DEBUG $ STRING) . l ength) ;
}

public ViewBookingsListTest () {
super (1 , " V i e w B o o k i n g s L i s t T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

t e s tCons t ruc to r () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

There are several important points to note in listing 5:

• We use an instance of Hamspy as the method invocation handler
for our test doubles.

• The MockLogger and MockFlightBookingDAO are associated
with the Hamspy instance.

• Our testConstructor test case does not set an expectation
that the debug() method will be invoked on our Logger.

• The Hamspy class exposes a method getInvocations() that
returns an array of method invocations. By looking at the
length of the array, we can see how many times a method was
invoked.

If we run the test it fails with the exception

jmunit.framework.cldc10.AssertionFailedException: Assert equals failed.
Expected 1, but was 0.

The failure reflects the fact that the debug() method was invoked zero times
rather than once. It’s easy to change the code of listing 4 so that the test passes;
see listing 6.

Listing 6
package com . hammingweight . hammockexamples . example5 ;

import javax . mic roed i t i on . l c du i . L i s t ;

public c lass ViewBookingsList extends L i s t {

public ViewBookingsList (Logger log , FlightBookingDAO bookingDao) {
super (" Y o u r B o o k i n g s " , L i s t . IMPLICIT) ;
log . debug (null) ;

}

}

Of course, writing null to the log is unhelpful. We modify our test (listing
7) to assert that a descriptive message is logged.

Listing 7
public void t e s tCons t ruc to r () {

// A r r a n g e

// Ac t
ViewBookingsList book ingsL i s t = new ViewBookingsList (this . mockLogger ,

this . mockBookingDao) ;

// A s s e r t s .

4

MethodInvocation [] mi = this . hamspy
. ge t Invoca t i on s (MockLogger .MTHD DEBUG $ STRING) ;

a s s e r tEqua l s (1 , mi . l ength) ;
a s s e r tEqua l s (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . " , mi [0]

. getMethodArguments () [0]) ;
}

In the previous test we used the getInvocations() method to retrieve all
invocations of the debug() method. The MethodInvocation class allows us
to get the arguments passed in a method call via getMethodArguments().
While we can explicitly use the getMethodArguments() to get a method’s
arguments so that we can check them, the next section will introduce the
InvocationVerifier class that makes writing these asserts easier (especially
if a method takes several arguments).

Naturally, our test now fails with an exception:

Assert equals failed. Expected ViewBookingsList constructed., but
was null.

Listing 8 shows the corrected class under test.

Listing 8
package com . hammingweight . hammockexamples . example5 ;

import javax . mic roed i t i on . l c du i . L i s t ;

public c lass ViewBookingsList extends L i s t {

public ViewBookingsList (Logger log , FlightBookingDAO bookingDao) {
super (" Y o u r B o o k i n g s " , L i s t . IMPLICIT) ;
log . debug (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . ") ;

}

}

2.4 Setting Expectations

We should check that our List is correctly populated with flights. We’ll assume
that our menu should be populated with three flight reservation codes. Listing
9 shows the asserts we’ve added to check the codes.

Listing 9
public void t e s tCons t ruc to r () {

// A r r a n g e

// Ac t
ViewBookingsList book ingsL i s t = new ViewBookingsList (this . mockLogger ,

this . mockBookingDao) ;

// A s s e r t s .
MethodInvocation [] mi = this . hamspy

. ge t Invoca t i on s (MockLogger .MTHD DEBUG $ STRING) ;
a s s e r tEqua l s (1 , mi . l ength) ;
a s s e r tEqua l s (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . " , mi [0]

. getMethodArguments () [0]) ;
a s s e r tEqua l s (" A B C 1 2 3 " , book ingsL i s t . g e tS t r ing (0)) ;
a s s e r tEqua l s (" D E F 4 5 6 " , book ingsL i s t . g e tS t r ing (1)) ;
a s s e r tEqua l s (" G H I 7 8 9 " , book ingsL i s t . g e tS t r ing (2)) ;

}

Listing 10 shows the code that we implement in the ViewBookingsList class
to get the reservation codes from the collaborating DAO.

Listing 10
package com . hammingweight . hammockexamples . example5 ;

import javax . mic roed i t i on . l c du i . L i s t ;

public c lass ViewBookingsList extends L i s t {

public ViewBookingsList (Logger log , FlightBookingDAO bookingDao) {
super (" Y o u r B o o k i n g s " , L i s t . IMPLICIT) ;

5

l og . debug (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . ") ;

for (int i = 0 ; i < bookingDao . getAl lBookings () . l ength ; i++) {
append (bookingDao . getAl lBookings () [i] . getReservationCode () , null) ;

}
}

}

Running the test fails with a NullPointerException. The reason is that spy
objects, while powerful, are not psychic. Our test double of the FlightBookingDAO
must return an Object when the getAllBookings() method is invoked. Since
the test double doesn’t know what value to return, it returns null. Hammock’s
spy objects always return a default value if no expectation has been explicitly
set (for primitive numeric types the default value is zero, the default boolean
value is false and the default value for any Object is null).

To fix our test we need to an expectation or, in the language of the AAA
idiom, we need to arrange our test. Listing 11 shows an attempt to fix the test:

Listing 11
public void t e s tCons t ruc to r () {

// A r r a n g e
FlightBooking [] f l i g h t s = {

new FlightBooking (" " , " " , " A B C 1 2 3 " , " " , " ") ,
new FlightBooking (" " , " " , " D E F 4 5 6 " , " " , " ") ,
new FlightBooking (" " , " " , " G H I 7 8 9 " , " " , " ") } ;

this . hamspy . se tExpectat ion (MockFlightBookingDAO .MTHD GET ALL BOOKINGS)
. setReturnValue (f l i g h t s) ;

// Ac t
ViewBookingsList book ingsL i s t = new ViewBookingsList (this . mockLogger ,

this . mockBookingDao) ;

// A s s e r t s .
MethodInvocation [] mi = this . hamspy

. ge t Invoca t i on s (MockLogger .MTHD DEBUG $ STRING) ;
a s s e r tEqua l s (1 , mi . l ength) ;
a s s e r tEqua l s (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . " , mi [0]

. getMethodArguments () [0]) ;
a s s e r tEqua l s (" A B C 1 2 3 " , book ingsL i s t . g e tS t r ing (0)) ;
a s s e r tEqua l s (" D E F 4 5 6 " , book ingsL i s t . g e tS t r ing (1)) ;
a s s e r tEqua l s (" G H I " , book ingsL i s t . g e tS t r ing (2)) ;

}

Unfortunately our test still fails with a NullPointerException since Ham-
mock interprets the setExpectation() method to set an expectation that a
method will be invoked exactly once. Since the getAllBookings() should be
invoked seven times, null is returned on the second invocation of the method.

We could change our code to set that we expect the method to be invoked
seven times as

this.hamspy.setExpectation(MockFlightBookingDAO.MTHD_GET_ALL_BOOKINGS)
.setReturnValue(flights).setInvocationCount(7);

However, the above is not a good change since we could (and should!) refac-
tor our code so that getAllBookings() is invoked only once. Since we want all
invocations of the method to respond identically we can set a stub expectation
as shown in listing 12. A stub expectation responds identically an arbitrary
number of times (possibly zero).

Listing 12
public void t e s tCons t ruc to r () {

// A r r a n g e
FlightBooking [] f l i g h t s = {

new FlightBooking (" " , " " , " A B C 1 2 3 " , " " , " ") ,
new FlightBooking (" " , " " , " D E F 4 5 6 " , " " , " ") ,
new FlightBooking (" " , " " , " G H I 7 8 9 " , " " , " ") } ;

this . hamspy . setStubExpectat ion (
MockFlightBookingDAO .MTHD GET ALL BOOKINGS) . setReturnValue (
f l i g h t s) ;

// Ac t

6

ViewBookingsList book ingsL i s t = new ViewBookingsList (this . mockLogger ,
this . mockBookingDao) ;

// A s s e r t s .
MethodInvocation [] mi = this . hamspy

. ge t Invoca t i on s (MockLogger .MTHD DEBUG $ STRING) ;
a s s e r tEqua l s (1 , mi . l ength) ;
a s s e r tEqua l s (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . " , mi [0]

. getMethodArguments () [0]) ;
a s s e r tEqua l s (" A B C 1 2 3 " , book ingsL i s t . g e tS t r ing (0)) ;
a s s e r tEqua l s (" D E F 4 5 6 " , book ingsL i s t . g e tS t r ing (1)) ;
a s s e r tEqua l s (" G H I 7 8 9 " , book ingsL i s t . g e tS t r ing (2)) ;
asser tTrue (this . hamspy

. getInvocat ionCount (MockFlightBookingDAO .MTHD GET ALL BOOKINGS) >= 1) ;
}

2.5 Using an InvocationVerifier Class

We can use the getMethodArguments() method to retrieve the arguments passed
to a method that was spied on and then validate each argument with an assert.
This can lead to verbose tests; it is better to get an InvocationVerifier instance
from the spy handler. The Hamspy class exposes a method, getExpectation(),
that returns an InvocationVerifier object that we can use to verify that a
mocked collaborator was invoked as expected. The name “getExpectation()”
was chosen to indicate a symmetry with mock objects; with mock objects we set
our expectations using a setExpectation() method before exercising the OUT;
when using spy objects we need to get an object for verifying our expectations
after exercising the OUT.

The test case below illustrates a test that we write to verify that the debug()
method is invoked on the mock Logger if a DAO throws an exception.

Listing 13
public void testLogExcept ion () {

// A r r a n g e
this . hamspy . setStubExpectat ion (

MockFlightBookingDAO .MTHD GET ALL BOOKINGS) . setThrowable (
new RuntimeException ()) ;

// Ac t
try {

new ViewBookingsList (this . mockLogger , this . mockBookingDao) ;
f a i l (" R u n t i m e E x c e p t i o n s h o u l d h a v e b e e n t h r o w n . ") ;

} catch (RuntimeException e) {
// e x p e c t e d .

}

// A s s e r t s .
this . hamspy

. getExpectat ion (
MockLogger .MTHD DEBUG $ STRING THROWABLE,
new Object [] { " D A O t h r e w e x c e p t i o n . " ,

new RuntimeException () }) . setArgumentMatcher (1 ,
new ClassArgumentMatcher ()) . set Invocat ionCount (1)

. v e r i f y () ;
}

When we run the test, it fails:

com.hammingweight.hammock.HammockException: A method was invoked less often
than expected.

Class: MockLogger
Method: MTHD_DEBUG_$_STRING_THROWABLE

Notice in the test that we can pass both arguments to be verified in a single
call rather than using two asserts. Also notice that we needed to use an
argument matcher to validate the second argument (the ClassArgumentMatcher
regards two arguments as equal if the class of the actual argument can be cast
to the class of the expected argument).

If you really like asserts and would prefer to see a test failure, rather than an
error, you can use the isVerified() method instead of the verify() method

7

(see Listing 14). This allows your test to use an assert. Note though that
the exceptions thrown by verify are more informative than the false value
returned by isVerified(). Unless you really think that asserts make your
code’s intention clearer, use verify() rather than isVerified().

Listing 14
public void testLogExcept ion () {

// A r r a n g e
this . hamspy . setStubExpectat ion (

MockFlightBookingDAO .MTHD GET ALL BOOKINGS) . setThrowable (
new RuntimeException ()) ;

// Ac t
try {

new ViewBookingsList (this . mockLogger , this . mockBookingDao) ;
f a i l (" R u n t i m e E x c e p t i o n s h o u l d h a v e b e e n t h r o w n . ") ;

} catch (RuntimeException e) {
// e x p e c t e d .

}

// A s s e r t s .
assertTrue (this . hamspy

. getExpectat ion (
MockLogger .MTHD DEBUG $ STRING THROWABLE,
new Object [] { " D A O t h r e w e x c e p t i o n . " ,

new RuntimeException () }) . setArgumentMatcher (1 ,
new ClassArgumentMatcher ()) . set Invocat ionCount (1)

. i s V e r i f i e d ()) ;
}

The MethodInvocationVerifier class exposes setInvocationCount() meth-
ods that allow us to specify how many times we expect a method to be invoked.
If we don’t explicitly set the invocation count, the verification will succeed as
long as the method is invoked at least once.

Finally, listing 15 shows the ViewBookingsList class that has been refac-
tored to pass both tests.

Listing 15
package com . hammingweight . hammockexamples . example5 ;

import javax . mic roed i t i on . l c du i . L i s t ;

public c lass ViewBookingsList extends L i s t {

public ViewBookingsList (Logger log , FlightBookingDAO bookingDao) {
super (" Y o u r B o o k i n g s " , L i s t . IMPLICIT) ;
log . debug (" V i e w B o o k i n g s L i s t c o n s t r u c t e d . ") ;

Fl ightBooking [] bookings = null ;
try {

bookings = bookingDao . getAl lBookings () ;
} catch (RuntimeException e) {

l og . debug (" D A O t h r e w e x c e p t i o n . " , e) ;
throw e ;

}
for (int i = 0 ; i < bookings . l ength ; i++) {

append (bookings [i] . getReservationCode () , null) ;
}

}

}

3 Spying on Concrete Classes

In the example of the previous section, the test doubles that we used imple-
mented an interface. Sometimes though we will want to spy on a class with
non-abstract methods. This raises an interesting question: Should the spy ob-
ject delegate invocations to the parent class or should it respond with default
responses as is the case when spying on an (abstract) interface. Listing 16, in
which we spy on a Vector instance, should make the question clearer.

Listing 16
package com . hammingweight . hammockexamples . example6 ;

8

import java . u t i l . Vector ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hamspy ;
import com . hammingweight . hammock . mocks . u t i l . MockVector ;

public c lass ConcreteSpyTest extends TestCase {

public void testDelegateToParent () {
Vector spyVector = new MockVector (new Hamspy ()) ;
spyVector . addElement (" f o o ") ;
a s s e r tEqua l s (1 , spyVector . s i z e ()) ;
a s s e r tEqua l s (" f o o " , spyVector . elementAt (0)) ;

}

public void tes tReturnDefau l tValues () {
Vector spyVector = new MockVector (new Hamspy ()) ;
spyVector . addElement (" f o o ") ;
a s s e r tEqua l s (0 , spyVector . s i z e ()) ;
a s s e r tNu l l (spyVector . elementAt (0)) ;

}

public ConcreteSpyTest () {
super (2 , " C o n c r e t e S p y T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testDelegateToParent () ;
break ;

case 1 :
tes tReturnDefau l tValues () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

The question is: Does the first or the second test pass? The answer is: The
first; the spy object behaves identically to its parent class. The second test fails
with the exception:

Assert equals failed. Expected 0, but was 1.

However, you might prefer it if the behavior allowed the second test to pass
instead. In fact, Mockito’s test doubles of concrete classes adopt the second
idiom: always return default values even when mocking a non-abstract method.
Fortunately, Hammock allows you to override the default behavior by using
an overloaded constructor that takes a boolean argument; if the argument is
true the test doubles will return default values (unless an expectation has been
explicitly set). Listing 17 shows the corrected test.

Listing 17
package com . hammingweight . hammockexamples . example6 ;

import java . u t i l . Vector ;

import jmunit . framework . c ldc10 . TestCase ;

import com . hammingweight . hammock .Hamspy ;
import com . hammingweight . hammock . mocks . u t i l . MockVector ;

public c lass ConcreteSpyTest extends TestCase {

public void testDelegateToParent () {
Vector spyVector = new MockVector (new Hamspy ()) ;
spyVector . addElement (" f o o ") ;
a s s e r tEqua l s (1 , spyVector . s i z e ()) ;
a s s e r tEqua l s (" f o o " , spyVector . elementAt (0)) ;

}

public void tes tReturnDefau l tValues () {
Hamspy hamspy = new Hamspy(true) ;
Vector spyVector = new MockVector (hamspy) ;
hamspy . setStubExpectat ion (MockVector .MTHD ELEMENT AT $ INT,

new Object [] { new In t ege r (100) }) . setReturnValue (" b a r ") ;
spyVector . addElement (" f o o ") ;
a s s e r tEqua l s (0 , spyVector . s i z e ()) ;

9

a s s e r tNu l l (spyVector . elementAt (0)) ;
a s s e r tEqua l s (" b a r " , spyVector . elementAt (1 0 0)) ;

}

public ConcreteSpyTest () {
super (2 , " C o n c r e t e S p y T e s t ") ;

}

public void t e s t (int testNum) throws Throwable {
switch (testNum) {
case 0 :

testDelegateToParent () ;
break ;

case 1 :
tes tReturnDefau l tValues () ;
break ;

default :
f a i l (" N o s u c h t e s t . ") ;

}
}

}

4 Conclusions

This document showed how the Hamspy handler allows test doubles to behave
like a spy objects. If we use spy objects, we do not necessarily need to set
expectations for the interactions with a test double. Instead, we spy on the
interactions and use asserts to verify that the OUT interacted as expected
after we have exercised the OUT.

When spying on test doubles of concrete classes, the Hamspy invocation han-
dler allows the test doubles to return default values or to delegate the call to
the mocked class.

10

